Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535931

RESUMO

Carica papaya L. leaves, traditionally utilized in dietary supplements and pharmaceuticals, exhibit a broad spectrum of potentially therapeutic properties, including anti-inflammatory, antimalarial, and wound healing properties. This study examined the acute and chronic toxicity of 10% ethanolic-extracted C. papaya leaf in Sprague Dawley rats. The acute toxicity assessment was a single oral dose of 5000 mg/kg body weight, while the chronic toxicity assessment included daily oral doses of 100, 400, 1000, and 5000 mg/kg over 180 days. Systematic monitoring covered a range of physiological and behavioral parameters, including body and organ weights. End-point evaluations encompassed hematological and biochemical analyses, along with gross and histopathological examinations of internal organs. Findings revealed no acute toxicity in the C. papaya leaf extract group, although a significant decrease in uterine weight was observed without accompanying histopathology abnormalities. In the chronic toxicity assessment, no statistically significant differences between the control and the C. papaya leaf extract groups were detected across multiple measures, including behavioral, physiological, and hematological indices. Importantly, histopathological examination corroborated the absence of any tissue abnormalities. The study results indicate that C. papaya leaf extract exhibited no adverse effects on the rats during the 180-day oral administration period, affirming its potential safety for prolonged usage.

2.
Heliyon ; 10(2): e25013, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312709

RESUMO

Background: Chemotherapy-induced thrombocytopenia (CIT) is a major reason for chemotherapy delays, dose reduction, or even treatment discontinuation, which may impact oncologic outcomes. We investigated the effects of quercetin and extracts of Phyllanthus emblica fruit (PEE), Morus alba leaf (MAE), and Ginkgo biloba leaf (GBE) on platelet recovery in a rat model of chemotherapy-induced thrombocytopenia. Methods: The total phenolic content (TPC), total flavonoid content (TFC), quercetin content, and antioxidant activities of all the extracts were determined. Sixty male Sprague Dawley rats were categorized into healthy controls and CIT groups. The CIT groups was administered a cyclophosphamide solution, while the control group received a saline solution. Each group was then subdivided into five subgroups of six animals which were administered with PEE, MAE, GBE, quercetin, or a vehicle for 15 days. Results: The highest quercetin content was found in PEE, followed by MAE and GBE, which correlated with their antioxidant properties. Administration of these extracts and quercetin did not significantly change the platelet counts in healthy rats. Thrombocytopenic rats treated with PEE, MAE, and GBE also were not associated with significant changes in platelet counts. However, more rapid platelet count recovery was observed in all groups receiving extracts. On day 11, platelet counts in the PEE, MAE, and GBE groups returned to near baseline levels with a mean of 4.29 %, -40.77 %, and -14.24 %, respectively, compared to -71 % in the CIT group. In thrombocytopenic rats treated with quercetin, there was a significant increase in platelet counts on days 9 and 11, with a mean decrease of 5.41 % from baseline on day 11. Conclusion: Quercetin improved platelet recovery in the animal model of CIT. This finding merits for further investigation to better elucidate the health benefits of quercetin and quercetin-rich plants and potential pharmacokinetics underpinning their activity in thrombocytopenia.

3.
Antibiotics (Basel) ; 13(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38247594

RESUMO

Antibiotic resistance (AR) associated with chronic limb-threatening ischemia (CLTI) poses additional challenges for the management of ischemic leg ulcers, increasing the likelihood of severe outcomes. This study assessed AR prevalence in bacteria isolated from CLTI-associated leg ulcers before (1 January 2017-10 March 2020; n = 69) and during (11 March 2020-31 December 2022; n = 59) the COVID-19 pandemic from patients admitted with positive wound cultures to a regional hospital in Chiang Mai (Thailand). There was a marked reduction in AR rates from 78% pre-pandemic to 42% during the pandemic (p < 0.0001), with rates of polymicrobial infections 22 percentage points lower (from 61% to 39%, respectively; p = 0.014). There were reduced AR rates to amoxicillin/clavulanate (from 42% to 4%; p < 0.0001) and ampicillin (from 16% to 2%; p = 0.017), as well as multidrug resistance (19% to 8%; p = 0.026). Factors associated with increased AR odds were polymicrobial infections (adjusted odds ratio (aOR) 5.6 (95% CI 2.1, 15.0); p = 0.001), gram-negative bacteria (aOR 7.0 (95% CI 2.4, 20.5); p < 0.001), and prior use of antibiotics (aOR 11.9 (95% CI 1.1, 128.2); p = 0.041). Improvements in infection control measures and hygiene practices in the community during the pandemic were likely key factors contributing to lower AR rates. Thus, strategic public health interventions, including community education on hygiene and the informed use of antibiotics, may be crucial in mitigating the challenges posed by AR in CLTI. Further, advocating for more judicious use of empirical antibiotics in clinical settings can balance effective treatment against AR development, thereby improving patient outcomes.

4.
Pestic Biochem Physiol ; 186: 105172, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35973764

RESUMO

Susceptibility to pyrethroids in the mosquito Culex quinquefasciatus, the major vector of lymphatic filariasis, is being seriously threatened worldwide. Knockdown resistance (kdr), caused by mutations in the voltage gated sodium channel (VGSC) gene, particularly the L1014F mutation, is an important resistance mechanism. Our aim was to develop a real-time PCR with melt curve analysis to evaluate the distribution of the L1014F mutation in Cx. quinquefasciatus throughout Thailand and to determine the polymorphism pattern of a VGSC gene fragment spanning the L1014F mutation. A total of 3760 females from 18 localities across five regions of Thailand were bio-assayed by exposure to 0.05% deltamethrin WHO papers, showing mortality rates ranging from 2.4% to 83.0%. Genotyping of 753 dead and surviving mosquitoes using our novel real-time PCR assay with melt curve analysis and tetra-primer allele-specific PCR revealed the mutant F1014 allele is closely associated with the deltamethrin resistance phenotype. The L1014F mutation was found at high frequency throughout Thailand, particularly in the North. However, some survivors were homozygous for wild type L1014 allele, which were further sequenced for the IIP-IIS6 region of VGSC gene. The haplotype network of phenotypically characterized individuals indicated the presence of other possible kdr alleles/resistance mechanisms at play including two novel mutations, V978E and D992E. The finding of new putative kdr alleles and widespread distribution of the F1014 allele emphasizes the significant role of kdr mutations in pyrethroid resistance in Thai Cx. quinquefasciatus populations. Monitoring kdr variations and phenotypic resistance is critical for managing resistance in Cx. quinquefasciatus.


Assuntos
Culex , Culicidae , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Culex/genética , Feminino , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores , Mutação , Piretrinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Tailândia , Canais de Sódio Disparados por Voltagem/genética
5.
Pestic Biochem Physiol ; 178: 104911, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34446187

RESUMO

Commercial insecticide aerosol sprays are widely used in households for controlling Aedes aegypti and Culex quinquefasciatus, the primary vectors of dengue virus and filarial worm, respectively. In Thailand, however, both mosquitoes are resistant to pyrethroids conferred by knockdown resistance (kdr) mutations, V1016G and F1534C in Ae. aegypti and L1014F in Cx. quinquefasciatus. This study evaluated the efficacy of five sprays (coded as AS1-AS5) with different formulations of pyrethroids against wild mosquitoes by using a cage bioassay in a furnished bedroom of a house. Five cages containing wild mosquitoes and five cages containing a pyrethroid susceptible strain of Ae. aegypti (25 females each), as a bio-indicator, were allocated in the room and spraying was operated for 15 s. Survivors and dead mosquitoes were genotyped individually for the kdr mutations using allele-specific PCR methods. Both mosquito species showed a high resistance to permethrin and deltamethrin with 12.5-58.0% mortality rates. For controlling Ae. aegypti, the spray AS4 showed the highest efficacy (mortality rates 76.0-100.0%, mean 95.2%), followed by AS2 (73.0-100.0%, mean 93.8%). For controlling Cx. quinquefasciatus, the best result was obtained from AS4 (66.0-98.0% mortality, mean 89.8%), followed by AS2 (73.0-97.0%, mean 84.5%). The sprays (AS4 and AS2) containing both type I and type II pyrethroids were more effective than those containing only type I pyrethroids or pyrethrum with the synergist piperonyl butoxide. The mutant G1016 and F1014 allele frequencies were significantly higher in the survivor groups than the dead groups of Ae. aegypti and Cx. quinquefasciatus, respectively, (P < 0.05). The efficacy of the sprays varied depending on the mosquito species, formulations, nozzles and locations of caged mosquitoes. The V1016G and L1014F mutations are associated with the reduced efficacy of sprays used in households for controlling resistant Ae. aegypti and Cx. quinquefasciatus mosquitoes, respectively.


Assuntos
Aedes , Culex , Inseticidas , Piretrinas , Aedes/genética , Aerossóis , Animais , Culex/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Tailândia
6.
Insects ; 10(9)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443487

RESUMO

Knockdown resistance (kdr) and detoxification enzymes are major resistance mechanisms in insecticide-resistant Aedes aegypti throughout the world. Persistence of the resistance phenotype is associated with high fitness of resistance alleles in the absence of insecticide pressure. This study determined the relative fitness cost of three insecticide-resistant strains of Aedes aegypti-PMD, PMD-R, and UPK-R-and a hybrid under similar laboratory conditions in the absence of insecticide. The PMD strain is resistant to DDT with no kdr alleles; the PMD-R is resistant to DDT and permethrin with 1534C homozygous kdr alleles; and UPK-R is resistant to DDT, permethrin, and deltamethrin with 989P + 1016G homozygous alleles. The DDT-resistant PMD strain had the highest fitness compared with the two DDT/pyrethroid-resistant strains (PMD-R and UPK-R) and hybrid. Consistent fitness costs were observed in the DDT/pyrethroid-resistant strains and hybrid, including shorter wing length, reduced egg hatchability, shorter female lifespan, and shorter viability of eggs after storage, whereas no effect was observed on blood feeding rate. In addition, reduced egg production was observed in the PMD-R strain and prolonged developmental time was seen in the UPK-R strain. The corresponding hybrid that is heterozygous for kdr alleles was fitter than either of the homozygous mutant genotypes. This is in accordance with the high frequency of heterozygous genotypes observed in natural populations of Ae. aegypti in Chiang Mai city.

7.
Insects ; 10(2)2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30781681

RESUMO

Many insect vector species of medical and veterinary importance are found abundantly in areas where animals are held. In these areas, they often rest for a period of time on objects around the animals both before and after blood feeding. However, the use of neurotoxic insecticides for vector control is not advised for use in such shelters as these chemicals can pose hazards to animals. The present study evaluated the efficacy of pyriproxyfen (PPF), an insect growth regulator, applied to polypropylene sheets and resting boxes on the reproductivity of mosquitoes found in animal shelters in Chiang Mai, Thailand. The sheets sprayed with 666 mg PPF/m² were set on the inner wall of a cowshed and kept in place for 3 h (6.00 to 9.00 pm). During this time, fully blood-fed female mosquitoes that landed and remained continuously on the sheets for 5, 10, and 20 min were collected. The results, involving Anopheles subpictus, An. vagus, Culex gelidus, Cx. tritaeniorhynchus, and Cx. vishnui, revealed significant reductions in oviposition rates, egg hatchability, pupation, and adult emergence in the PPF-treated groups compared to the control groups. Adult emergence rates were reduced to 85.6⁻94.9% and 95.5⁻100% in those exposed for 10 and 20 min, respectively. The sheets retained their effectiveness for three months. The PPF-treated (666 mg/m²) resting boxes (35 × 35 × 55 cm) were placed overnight at a chicken farm where Cx. quinquefasciatus predominated. Blood-fed mosquitoes were collected in the morning and reared in the laboratory. Oviposition rates were reduced by 71.7% and adult emergence was reduced by 97.8% compared to the controls. PPF residual spray on surface materials in animal sheds is a potential method for controlling mosquitoes. Further studies are needed to evaluate the impact of PPF-treated materials on wild populations.

8.
Insects ; 10(1)2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30586929

RESUMO

In ongoing screening research for edible plants, Petroselinum crispum essential oil was considered as a potential bioinsecticide with proven antimosquito activity against both the pyrethroid susceptible and resistant strains of Aedes aegypti. Due to the comparative mosquitocidal efficacy on these mosquitoes, this plant essential oil is promoted as an attractive candidate for further study in monitoring resistance of mosquito vectors. Therefore, the aim of this study was to evaluate the impact of P. crispum essential oil on the biochemical characteristics of the target mosquito larvae of Ae. aegypti, by determining quantitative changes of key enzymes responsible for xenobiotic detoxification, including glutathione-S-transferases (GSTs), α- and ß-esterases (α-/ß-ESTs), acetylcholinesterase (AChE), acid and alkaline phosphatases (ACP and ALP) and mixed-function oxidases (MFO). Three populations of Ae. aegypti, comprising the pyrethroid susceptible Muang Chiang Mai-susceptible (MCM-S) strain and the pyrethroid resistant Pang Mai Dang-resistant (PMD-R) and Upakut-resistant (UPK-R) strains, were used as test organisms. Biochemical study of Ae. aegypti larvae prior to treatment with P. crispum essential oil revealed that apart from AChE, the baseline activity of most defensive enzymes, such as GSTs, α-/ß-ESTs, ACP, ALP and MFO, in resistant UPK-R or PMD-R, was higher than that determined in susceptible MCM-S. However, after 24-h exposure to P. crispum essential oil, the pyrethroid susceptible and resistant Ae. aegypti showed similarity in biochemical features, with alterations of enzyme activity in the treated larvae, as compared to the controls. An increase in the activity levels of GSTs, α-/ß-ESTs, ACP and ALP was recorded in all strains of P. crispum oil-treated Ae. aegypti larvae, whereas MFO and AChE activity in these mosquitoes was decreased. The recognizable larvicidal capability on pyrethroid resistant Ae. aegypti, and the inhibitory effect on AChE and MFO, emphasized the potential of P. crispum essential oil as an attractive alternative application for management of mosquito resistance in current and future control programs.

9.
J Med Entomol ; 55(4): 975-981, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29590378

RESUMO

Mutation of the voltage-gated sodium channel genes or knockdown resistance (kdr) and metabolic resistance in Aedes aegypti (L.) (Diptera: Culicidae) are important resistance mechanisms against pyrethroids. The present study investigated the effect of relaxation of deltamethrin selection pressure on the level of mixed-function oxidases (MFO), when the allele frequency of S989P+V1016G mutations is fixed in a resistant Ae. aegypti strain (UPK-R) from Chiang Mai, Thailand. The mosquitoes were divided into two groups, exposure and nonexposure groups, and maintained for 12 generations in an insectary room. Adults of the exposure group (F3 to F12) were treated with 0.05% deltamethrin-impregnated papers. The median lethal concentrations (LC50) of deltamethrin of larvae were determined by World Health Organization (WHO) bioassay. MFO activity was determined in F0 and F12. The results revealed that there was a decreasing trend of adult mortality rates in the exposure group over time. The larval LC50 values of the exposure group were gradually increased, whereas those of the nonexposure group were gradually decreased. The level of MFO activity in the nonexposure group (F12) was lower than the parent and exposure groups (F12) by 1.5 and 4-fold in the larvae, respectively, and 1.5 and 2.5-fold in the adult females, respectively. However, the frequency of P989+G1016 alleles in both groups was 100% up to F12 when the experiment ended. This study indicates that there was a significant but small reduction in the activity levels of MFOs when pyrethroid selection pressure is relaxed in this kdr strain of Ae. aegypti.


Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , Frequência do Gene/efeitos dos fármacos , Resistência a Inseticidas , Nitrilas/farmacologia , Piretrinas/farmacologia , Seleção Genética , Animais , Inseticidas/farmacologia
10.
Parasit Vectors ; 10(1): 465, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29017613

RESUMO

BACKGROUND: Mutation of the voltage-gated sodium channel (VGSC) gene, or knockdown resistance (kdr) gene, is an important resistance mechanism of the dengue vector Aedes aegypti mosquitoes against pyrethroids. In many countries in Asia, a valine to glycine substitution (V1016G) and a phenylalanine to cysteine substitution (F1534C) are common in Ae. aegypti populations. The G1016 and C1534 allele frequencies have been increasing in recent years, and hence there is a need to have a simple and inexpensive tool to monitor the alleles in large scale. METHODS: A multiplex PCR to detect V1016G and F1534C mutations has been developed in the current study. This study utilized primers from previous studies for detecting the mutation at position 1016 and newly designed primers to detect variants at position 1534. The PCR conditions were validated and compared with DNA sequencing using known kdr mutant laboratory strains and field collected mosquitoes. The efficacy of this method was also compared with allele-specific PCR (AS-PCR). RESULTS: The results of our multiplex PCR were in complete agreement with sequencing data and better than the AS-PCR. In addition, the efficiency of two non-toxic DNA staining dyes, Ultrapower™ and RedSafe™, were evaluated by comparing with ethidium bromide (EtBr) and the results were satisfactory. CONCLUSIONS: Our multiplex PCR method is highly reliable and useful for implementing vector surveillance in locations where the two alleles co-occur.


Assuntos
Aedes/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Reação em Cadeia da Polimerase Multiplex/métodos , Mutação , Piretrinas/farmacologia , Aedes/efeitos dos fármacos , Alelos , Animais , Primers do DNA , Frequência do Gene , Genótipo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética
11.
Parasit Vectors ; 9(1): 417, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27460671

RESUMO

BACKGROUND: Mutation in the voltage-gated sodium channel gene that results in knockdown resistance (kdr), is a major mechanism of pyrethroid resistance in several mosquito species. In Aedes aegypti, V1016G (occurring with and without S989P) and F1534C mutations are common and widely distributed throughout Asia. The G1016 allele is known to be associated with resistance to type I and II pyrethroids. The C1534 allele is primarily associated with resistance to type I pyrethroids and is known to be a recessive allele in conferring kdr. METHODS: We performed crossing experiments using a P989 + G1016 homozygous mutant strain (UPK-R), a C1534 homozygous mutant strain (PMD-R) and a pyrethroid susceptible strain (PMD) to determine the insecticide susceptibility of different genotypic hybrids. Allele-specific PCR methods were used to confirm the genotypes. Metabolic resistance caused by oxidative enzymes and esterase enzymes was ruled out by the addition of piperonyl butoxide (PBO) and bis(4-nitrophenyl)-phosphate, BNPP), respectively. RESULTS: The median lethal concentration (LC50) of deltamethrin susceptibility of a S/P989 + V/G1016 + F/F1534 double heterozygous hybrid from the UPK-R × PMD cross was 0.57 (95 % CI: 0.51-0.63) µgl(-1), which was about 12-fold lower than for UPK-R, 6.98 (6.10-8.04) µgl(-1), and only about 4-fold greater than the susceptible PMD, 0.13 (0.12-0.15) µgl(-1). This resistance returned to 0.08 (0.07-0.09) µgl(-1) on the addition of PBO suggesting that the P989 + G1016 kdr alleles are recessive. The LC50 of the S/P989 + V/G1016 + F/C1534 triple heterozygous hybrid was 3.58 (3.21-3.95) µgl(-1), which was intermediate between that of the homozygous mutant genotypes, being 2-fold higher than the C1534 homozygote and 2-fold lower than the P989 + G1016 homozygote. These minor differences and the high LC50 values of the triple mutated heterozygote indicate there is some degree of functional equivalence of the P989 + G1016 and C1534 alleles in the heterozygote. Addition of PBO decreased the LC50 values by 2-fold, from 3.58 (3.21-3.95) to 1.52 (1.35-1.73) µgl(-1), suggesting that oxidase enzymes play a partial role in resistance. The results are consistent with the median lethal time (LT50) of the triple mutated heterozygote against 0.05 % deltamethrin paper. An adult susceptibility test also revealed that the triple mutated heterozygote was resistant to deltamethrin and permethrin. CONCLUSIONS: The combination of the three kdr alleles in the triple mutated heterozygote, S/P989 + V/G1016 + F/C1534, confers high resistance to pyrethroids. This heterozygous form is common in Ae. aegypti populations throughout Thailand and may have an adverse effect on the efficacy of a mosquito control program using insecticide-based approaches.


Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , Técnicas de Silenciamento de Genes , Genótipo , Resistência a Inseticidas , Canais de Sódio/genética , Animais , Cruzamentos Genéticos , Inseticidas/farmacologia , Piretrinas/farmacologia , Tailândia
12.
Acta Trop ; 162: 125-132, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27325294

RESUMO

In Thailand, control of dengue outbreaks is currently attained by the use of space sprays, particularly thermal fogging using pyrethroids, with the aim of killing infected Aedes mosquito vectors in epidemic areas. However, the principal dengue vector, Aedes aegypti, is resistant to pyrethroids conferred mainly by mutations in the voltage-gated sodium channel gene, F1534C and V1016G, termed knockdown resistance (kdr). The objectives of this study were to determine the temporal frequencies of F1534C and V1016G in Ae. aegypti populations in relation to pyrethroid resistance in Chiang Mai city, and to evaluate the impact of the mutations on the efficacy of thermal fogging with the pyrethroid deltamethrin. Larvae and pupae were collected from several areas around Chiang Mai city during 2011-2015 and reared to adulthood for bioassays for deltamethrin susceptibility. These revealed no trend of increasing deltamethrin resistance during the study period (mortality 58.0-69.5%, average 62.8%). This corresponded to no overall change in the frequencies of the C1534 allele (0.55-0.66, average 0.62) and G1016 allele (0.34-0.45, average 0.38), determined using allele specific amplification. Only three genotypes of kdr mutations were detected: C1534 homozygous (VV/CC); G1016/C1534 double heterozygous (VG/FC); and G1016 homozygous (GG/FF) indicating that the F1534C and V1016G mutations occurred on separate haplotypic backgrounds and a lack of recombination between them to date. The F1 progeny females were used to evaluate the efficacy of thermal fogging spray with Damthrin-SP(®) (deltamethrin+S-bioallethrin+piperonyl butoxide) using a caged mosquito bioassay. The thermal fogging spray killed 100% and 61.3% of caged mosquito bioassay placed indoors and outdoors, respectively. The outdoor spray had greater killing effect on C1534 homozygous and had partially effect on double heterozygous mosquitoes, but did not kill any G1016 homozygous mutants living outdoors. As this selection pressure would be expected to have led to an increase in frequency of the G1016 allele, it is likely that the relatively stable kdr mutation allele frequencies observed here result from balancing selection, in the form of overdominance for VG/FC genotypes and/or the effects of fluctuating environments that vary in insecticide exposure.


Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Mutação/genética , Piretrinas/farmacologia , Adulto , Alelos , Animais , Dengue/prevenção & controle , Feminino , Frequência do Gene , Técnicas de Silenciamento de Genes , Genótipo , Humanos , Tailândia
13.
Acta Trop ; 149: 232-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26091622

RESUMO

The mosquito vector Culex quinquefasciatus is known to be resistant to insecticides worldwide, including Thailand. This study was the first investigation of the insecticide resistance mechanisms, involving metabolic detoxification and target site insensitivity in C. quinquefasciatus from Thailand. Adult females reared from field-caught larvae from six provinces of northern Thailand were determined for resistant status by exposing to 0.05% deltamethrin, 0.75% permethrin and 5% malathion papers using the standard WHO susceptibility test. The overall mortality rates were 45.8%, 11.4% and 80.2%, respectively. A fragment of voltage-gated sodium channel gene was amplified and sequenced to identify the knock down resistance (kdr) mutation. The ace-1 gene mutation was determined by using PCR-RFLP. The L1014F kdr mutation was observed in all populations, but the homozygous mutant F/F1014 genotype was found only in two of the six provinces where the kdr mutation was significantly correlated with deltamethrin resistance. However, none of mosquitoes had the G119S mutation in the ace-1 gene. A laboratory deltamethrin resistant strain, Cq_CM_R, has been established showing a highly resistant level after selection for a few generations. The mutant F1014 allele frequency was significantly increased after one generation of selection. A synergist assay was performed to assess the metabolic detoxifying enzymes. Addition of bis(4-nitrophenyl)-phosphate (BNPP) and diethyl maleate (DEM), inhibitors of esterases and glutathione S-transferases (GST), respectively, into the larval bioassay of the Cq_CM strain with deltamethrin showed no significant reduction. By contrast, addition of piperonyl butoxide (PBO), an inhibitor of cytochrome P450 monooxygenases, showed a 9-fold reduction of resistance. Resistance to pyrethroids in C. quinquefasciatus is widely distributed in northern Thailand. This study reports for the first time for the detection of the L1014F kdr mutation in wild populations of C. quinquefasciatus in Thailand. At least two major mechanisms, kdr and cytochrome P450 monooxygenases, confer resistance to deltamethrin in Thai C. quinquefasciatus populations.


Assuntos
Culex/efeitos dos fármacos , Inseticidas/farmacologia , Animais , Culex/genética , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Sistema Enzimático do Citocromo P-450/genética , Inibidores Enzimáticos/farmacologia , Feminino , Resistência a Inseticidas/genética , Larva/efeitos dos fármacos , Malation/farmacologia , Maleatos/farmacologia , Controle de Mosquitos , Nitrilas/farmacologia , Nitrofenóis/farmacologia , Permetrina/farmacologia , Butóxido de Piperonila/farmacologia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Piretrinas/farmacologia , Tailândia , Canais de Sódio Disparados por Voltagem/genética
14.
PLoS One ; 9(7): e102746, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25047125

RESUMO

BACKGROUND: Pyrethroid insecticides, especially permethrin and deltamethrin, have been used extensively worldwide for mosquito control. However, insecticide resistance can spread through a population very rapidly under strong selection pressure from insecticide use. The upregulation of aldehyde dehydrogenase (ALDH) has been reported upon pyrethroid treatment. In Aedes aegypti, the increase in ALDH activity against the hydrolytic product of pyrethroid has been observed in DDT/permethrin-resistant strains. The objective of this study was to identify the role of individual ALDHs involved in pyrethroid metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Three ALDHs were identified; two of these, ALDH9948 and ALDH14080, were upregulated in terms of both mRNA and protein levels in a DDT/pyrethroid-resistant strain of Ae. aegypti. Recombinant ALDH9948 and ALDH14080 exhibited oxidase activities to catalyse the oxidation of a permethrin intermediate, phenoxybenzyl aldehyde (PBald), to phenoxybenzoic acid (PBacid). CONCLUSIONS/SIGNIFICANCE: ALDHs have been identified in association with permethrin resistance in Ae. aegypti. Characterisation of recombinant ALDHs confirmed the role of this protein in pyrethroid metabolism. Understanding the biochemical and molecular mechanisms of pyrethroid resistance provides information for improving vector control strategies.


Assuntos
Aedes/genética , Aldeído Desidrogenase/metabolismo , Resistência a Inseticidas/genética , Controle de Mosquitos , Piretrinas/farmacologia , Aedes/enzimologia , Aldeído Desidrogenase/genética , Animais , Regulação para Cima/efeitos dos fármacos
15.
Parasit Vectors ; 6(1): 253, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24059267

RESUMO

BACKGROUND: Resistance to pyrethroid insecticides is widespread among populations of Aedes aegypti, the main vector for the dengue virus. Several different point mutations within the voltage-gated sodium channel (VGSC) gene contribute to such resistance. A mutation at position 1016 in domain II, segment 6 of the VGSC gene in Ae. aegypti leads to a valine to glycine substitution (V1016G) that confers resistance to deltamethrin. METHODS: This study developed and utilized an allele-specific PCR (AS-PCR) assay that could be used to detect the V1016G mutation. The assay was validated against a number of sequenced DNA samples of known genotype and was determined to be in complete agreement. Larvae and pupae were collected from various localities throughout Thailand. Samples were reared to adulthood and their resistance status against deltamethrin was determined by standard WHO susceptibility bioassays. Deltamethrin-resistant and susceptible insects were then genotyped for the V1016G mutation. Additionally, some samples were genotyped for a second mutation at position 1534 in domain III (F1534C) which is also known to confer pyrethroid resistance. RESULTS: The bioassay results revealed an overall mortality of 77.6%. Homozygous 1016G individuals survived at higher rates than either heterozygous or wild-type (1016 V) mosquitoes. The 1016G mutation was significantly and positively associated with deltamethrin resistance and was widely distributed throughout Thailand. Interestingly, wild-type 1016 V mosquitoes tested were homozygous for the 1534C mutation, and all heterozygous mosquitoes were also heterozygous for 1534C. Mutant homozygous (G/G) mosquitoes expressed the wild-type (F/F) at position 1534. However, the presence of the 1534C mutation was not associated with deltamethrin resistance. CONCLUSIONS: Our bioassay results indicate that all populations sampled display some degree of resistance to deltamethrin. Homozygous 1016G mosquitoes were far likelier to survive such exposure. However, resistance in some populations cannot be explained due to kdr mutations and indicates that other resistance mechanisms are operating. The presence of this mutation alone does not fully explain the resistance phenotype we see among Thai Ae. aegypti populations.


Assuntos
Aedes/genética , Técnicas de Genotipagem/métodos , Resistência a Inseticidas , Inseticidas/farmacologia , Nitrilas/farmacologia , Reação em Cadeia da Polimerase/métodos , Piretrinas/farmacologia , Canais de Sódio Disparados por Voltagem/genética , Animais , Bioensaio , Entomologia/métodos , Feminino , Proteínas Mutantes/genética , Análise de Sobrevida , Tailândia
16.
Parasitol Res ; 109(3): 531-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21336645

RESUMO

Previous studies have shown that permethrin resistance in our selected PMD-R strain of Aedes aegypti from Chiang Mai, Thailand, was associated with a homozygous mutation in the knockdown resistance (kdr) gene and other mechanisms. In this study, we investigated the metabolic mechanism of resistance of this strain compared to the PMD strain which is susceptible to permethrin. The permethrin susceptibility of larvae was determined by a dose-response bioassay. Two synergists, namely piperonyl butoxide (PBO) and bis(4-nitrophenyl)-phosphate (BNPP), were also added to determine if the resistance is conferred by oxidase or esterase enzymes, respectively. The LC(50) value for PMD-R (25.42 ppb) was ∼25-fold higher than for PMD (1.02 ppb). The LC(50) was reduced 3.03-fold in PMD-R and 2.27-fold in PMD when the oxidase inhibitor (PBO) was added, but little or no reduction was observed in the presence of BNPP, indicating that oxidative enzymes play an important role in resistance. However, the LC(50) previously observed in the heterozygous mutation form was reduced ∼eightfold, indicating that metabolic resistance is inferior to kdr. The levels of cytochrome P450 (P450) extracted from fourth instar larvae were similar in both strains and were about 2.3-fold greater in microsomal fractions than in crude supernatant and cytosol fractions. Microsome oxidase activities were determined by incubation with each of three substrates, i.e., permethrin, phenoxybenzyl alcohol (PBOH), and phenoxybenzaldehyde (PBCHO), in the presence or absence of nicotinamide adenine dinucleotide phosphate (NADPH), nicotinamide adenine dinucleotide (NAD(+)), PBO, and BNPP. It is known that hydrolysis of permethrin produces PBOH which is further oxidized to PBCHO by alcohol dehydrogenase (ADH) and then to phenoxybenzoic acid (PBCOOH) by aldehyde dehydrogenase (ALDH). When incubated with permethrin, a small amount of PBCOOH was detected in both strains (about 1.1-1.2 nmol/min/mg protein), regardless of the addition of NADPH. The addition of PBO resulted in about 70% and 50% reduction of PBCOOH in PMD and PMD-R, respectively. The addition of BNPP reduced PBCOOH about 50% and 35% in PMD and PMD-R, respectively. Using PBOH as substrate increased PBCOOH ∼16-fold and ∼40-fold in PMD and PMD-R, respectively. Using PBCHO as substrate increased PBCOOH ∼26-fold and ∼50-fold in PMD and PMD-R, respectively. The addition of NADPH, and particularly NAD(+), increased the level of PBCOOH. Together, the results have indicated the presence of a metabolic metabolism involving P450, ADHs, and ALDHs in both PMD and PMD-R strains, with greater enzyme activity in the latter.


Assuntos
Aedes/efeitos dos fármacos , Aedes/enzimologia , Resistência a Inseticidas , Inseticidas/metabolismo , Inseticidas/farmacologia , Piretrinas/metabolismo , Piretrinas/farmacologia , Álcool Desidrogenase/metabolismo , Aldeído Desidrogenase/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores Enzimáticos/metabolismo , Enzimas/metabolismo , Larva/efeitos dos fármacos , Microssomos/metabolismo , Nitrofenóis/metabolismo , Permetrina/farmacologia , Butóxido de Piperonila/metabolismo , Tailândia
17.
Insect Biochem Mol Biol ; 41(3): 203-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21195177

RESUMO

The Epsilon glutathione transferase (GST) class in the dengue vector Aedes aegypti consists of eight sequentially arranged genes spanning 53,645 bp on super contig 1.291, which maps to chromosome 2. One Epsilon GST, GSTE2, has previously been implicated in conferring resistance to DDT. The amino acid sequence of GSTE2 in an insecticide susceptible and a DDT resistant strain differs at five residues two of which occur in the putative DDT binding site. Characterization of the respective recombinant enzymes revealed that both variants have comparable DDT dehydrochlorinase activity although the isoform from the resistant strain has higher affinity for the insecticide. GSTe2 and two additional Epsilon GST genes, GSTe5 and GSTe7, are expressed at elevated levels in the resistant population and the recombinant homodimer GSTE5-5 also exhibits low levels of DDT dehydrochlorinase activity. Partial silencing of either GSTe7 or GSTe2 by RNA interference resulted in an increased susceptibility to the pyrethroid, deltamethrin suggesting that these GST enzymes may also play a role in resistance to pyrethroid insecticides.


Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , DDT/farmacologia , Glutationa Transferase/genética , Nitrilas/farmacologia , Piretrinas/farmacologia , Aedes/metabolismo , Sequência de Aminoácidos , Animais , DDT/metabolismo , Feminino , Regulação da Expressão Gênica , Glutationa Transferase/metabolismo , Resistência a Inseticidas , Liases/metabolismo , Masculino , Dados de Sequência Molecular , Nitrilas/metabolismo , Piretrinas/metabolismo
18.
J Struct Biol ; 164(2): 228-35, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18778777

RESUMO

Glutathione S-transferases (GSTs), a major family of detoxifying enzymes, play a pivotal role in insecticide resistance in insects. In the malaria vector Anopheles gambiae, insect-specific epsilon class GSTs are associated with resistance to the organochlorine insecticide DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane]. Five of the eight class members have elevated expression levels in a DDT resistant strain. agGSTe2 is considered the most important GST in conferring DDT resistance in A. gambiae, and is the only member of the epsilon class with confirmed DDT-metabolizing activity. A delta class GST from the same species shows marginal DDT-metabolizing activity but the activity of agGSTe2 is approximately 350x higher than the delta class agGST1-6. To investigate its catalytic mechanism and the molecular basis of its unusually high DDT-metabolizing ability, three agGSTe2 crystal structures including one apo form and two binary complex forms with the co-factor glutathione (GSH) or the inhibitor S-hexylglutathione (GTX) have been solved with a resolution up to 1.4A. The structure of agGSTe2 shows the canonical GST fold with a highly conserved N-domain and a less conserved C-domain. The binding of GSH or GTX does not induce significant conformational changes in the protein. The modeling of DDT into the putative DDT-binding pocket suggests that DDT is likely to be converted to DDE [1,1-dichloro-2,2-bis-(p-chlorophenyl)ethylene] through an elimination reaction triggered by the nucleophilic attack of the thiolate group of GS(-) on the beta-hydrogen of DDT. The comparison with the less active agGST1-6 provides the structural evidence for its high DDT-detoxifying activity. In short, this is achieved through the inclination of the upper part of H4 helix (H4'' helix), which brings residues Arg112, Glu116, and Phe120 closer to the GSH-binding site resulting in a more efficient GS(-)-stabilizing hydrogen-bond-network and higher DDT-binding affinity.


Assuntos
Anopheles/enzimologia , DDT/metabolismo , Glutationa Transferase/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Resistência a Medicamentos , Glutationa/química , Glutationa Transferase/metabolismo , Insetos Vetores , Insetos , Inseticidas/metabolismo , Malária/transmissão , Ligação Proteica , Conformação Proteica
19.
Insect Biochem Mol Biol ; 38(1): 113-23, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18070670

RESUMO

Annotation of the recently determined genome sequence of the major dengue vector, Aedes aegypti, reveals an abundance of detoxification genes. Here, we report the presence of 235 members of the cytochrome P450, glutathione transferase and carboxy/cholinesterase families in Ae. aegypti. This gene count represents an increase of 58% and 36% compared with the fruitfly, Drosophila melanogaster, and the malaria mosquito, Anopheles gambiae, respectively. The expansion is not uniform within the gene families. Secure orthologs can be found across the insect species for enzymes that have presumed or proven biosynthetic or housekeeping roles. In contrast, subsets of these gene families that are associated with general xenobiotic detoxification, in particular the CYP6, CYP9 and alpha esterase families, have expanded in Ae. aegypti. In order to identify detoxification genes associated with resistance to insecticides we constructed an array containing unique oligonucleotide probes for these genes and compared their expression level in insecticide resistant and susceptible strains. Several candidate genes were identified with the majority belonging to two gene families, the CYP9 P450s and the Epsilon GSTs. This 'Ae. aegypti Detox Chip' will facilitate the implementation of insecticide resistance management strategies for arboviral control programmes.


Assuntos
Aedes/genética , Genoma de Inseto , Inativação Metabólica/genética , Resistência a Inseticidas/genética , Animais , Carboxilesterase/genética , Colinesterases/genética , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Glutationa Transferase/genética , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos
20.
Insect Biochem Mol Biol ; 37(10): 1026-35, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17785190

RESUMO

In this report, we describe the glutathione transferase (GST) gene family in the dengue vector Aedes aegypti and suggest a novel role for a new class of mosquito GSTs. Twenty-six GST genes are present in Ae. aegypti, two of which are alternatively spliced to give a total of 29 transcripts for cytosolic GSTs. The six classes identified in other insect species are all represented and, as in Anopheles gambiae, the majority of the mosquito GSTs belong to the insect-specific Delta and Epsilon classes with eight members each. Sixteen secure 1:1 orthologs were identified between GSTs in Ae. aegypti and An. gambiae, but only four of these have recognisable orthologs in Drosophila melanogaster. Three mosquito-specific GSTs were identified which did not belong to any previously recognised GST classes. One of these, GSTx2, has been previously implicated in conferring 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (DDT) resistance in Ae. aegypti from South America. However, we found no evidence for increased levels of this GST protein in DDT/pyrethroid-resistant populations from Thailand. Furthermore, we show that the recombinant GSTX2-2 protein is unable to metabolise DDT. Interestingly, GSTX2-2 showed an affinity for hematin, and this, together with the restricted distribution of this class to haematophagous insects, may indicate a role for these enzymes in protecting mosquitoes against heme toxicity during blood feeding.


Assuntos
Aedes/enzimologia , Glutationa Transferase/metabolismo , Proteínas de Insetos/metabolismo , Aedes/genética , Processamento Alternativo , Sequência de Aminoácidos , Animais , Glutationa Transferase/química , Glutationa Transferase/genética , Hemina/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/genética , Dados de Sequência Molecular , Família Multigênica , Filogenia , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...